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Abstract-A fast numerical technique for the solution of partial differential equations describing time- 
dependent two- or three-dimensional transport phenomena is developed. It is based on transforming the 
original time-domain equations into the Laplace domain where numerical integration is performed and by 
subsequent numerical inverse transformation the final solution can be obtained. The computation time is 
thus reduced by more than one order of magnitude in comparison with the conventional finite-difference 

techniques. The effectiveness of the proposed technique is demonstrated by illustrative examples. 

1. INTRODUCTION 

THE APPLICATION of the Laplace transforms [I] is one 
of the classical approaches for the solution of various 
chemical engineering problems described by linear 
ordinary or partial differential equations. The Laplace 
transform,f(p), of a given piece-wise continuous time 
domain function, f(0), which is of exponential order 
is defined by 

s 
m 

&4 = f(o) w  [-PQ do. (1) 0 

However, this approach is not universally apph- 
cable. Its natural limitations are determined by the 
possibilities for solving the relevant equations in the 
Laplace domain and the subsequent performance of 
the inverse transformation of this solution. Although, 
in many chemical engineering problems described by 
ordinary or partial differential equations with con- 
stant coefficients it does not pose substantial diffi- 
culties to obtain the corresponding Laplace domain 
solution, these solutions are rather complicated func- 
tions of p and their analytical inverse transformation 
is exceedingly difficult if not impossible. This obstacle 
could be overcome by applying numerical techniques 
for the inversion of Laplace transforms [2]. They are 
usually based on one of the following approaches: 
expansion of the Laplace transform into series of func- 
tions (e.g. orthogonal polynomials) ; reducing the 
problem to inverse Fourier transformation for which 
efficient computational techniques exist; or numerical 
solution of the Melline integral 
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where u is the real part of p. 
It has been shown that for the solution of mass- 

transfer problems in flow, when a flat velocity profile 
is assumed, the numerical techniques employing 
expansion of the Laplace domain solution into series 
of Chebyshov polynomials of the first kind or Fourier 
sine series give best results with respect to precision 
and consumption of computation time [2]. 

However, in the solution of linear partial differ- 
ential equations describing two- or three-dimensional 
problems, and with coefficients which are not necess- 
arily constants, the Laplace transformation does not 
lead to readily solvable partial or ordinary differential 
equations. For this reason in such cases other numeri- 
cal techniques for approximation of the solution of 
these partial differential equations are utilized. 
Among them the finite-difference techniques [3] have 
gained a considerable popularity. One of the main 
drawbacks of these techniques is that they require a 
considerable amount of computation time especially 
in the cases of multidimensional transient problems. 
This could be a serious disadvantage if the cor- 
responding equation must be solved many times (e.g. 
parameter identification). 

As partial differential equations of the afore- 
said type are frequently encountered in chemical 
engineering, the necessity of introducing a more 
efficient numerical approach for their solution is 
obvious. 

In this paper, a fast numerical technique for the 
solution of linear partial differential equations, com- 
bining the Laplace transform and the finite-difference 
techniques, is proposed. It is illustrated on equations 
describing the transient mass-transfer in single and 
multi-stream laminar parallel-plate flow systems. 
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NOMENCLATURE 

a half of the distance between the t time [s] 
parallel plates [m] II average linear flow rate [m s- ‘1 

h coefficients defined in equation (6) u dimensionless flow rate, 1.5( I - Y 2, 
c solute concentration [mol m-‘1 x axial coordinate [m] 

CC’ initial solute concentration [mol m- ‘1 X dimensionless axial coordinate, s/L 
C dimensionless solute concentration, c/c0 y  coordinate perpendicular to the parallel 
e Laplace transform of C plates [m] 

molecular diffusion coefficient [m’s- ‘1 
;ib, t’ 

Y dimensionless coordinate perpendicular 
ime-domain function to the parallel plates, JJ/U. 

,7(p) Laplace transform ofS(O) 
K number of time-steps Greek symbols 
L characteristic length [m] P geometrical dimensionless group, (u/L)’ 
M number of s-steps 0 dimensionless time, W/L 
N number of ,r-steps 0 real part of p 

P Laplace complex variable 7 Fourier number, D,L/(uu’). 

2. THEORETICAL CONSIDERATIONS 

The numerical inversion of a given Laplace domain 
function according to the methods mentioned above 
requires the calculation of this function for a given set 
of values of the Laplace complex variable (p). This 
set is determined by the method selected for per- 
forming the inverse Laplace transformation (e.g. 
p1 = k where k = I, 2,3,. . . for the method using 
expansion of the function in series of Chebyshov poly- 
nomials of the first kind ; pa = 2/i+ I where 
k = I, 2.3, , for the method employing Fourier sine 
series expansion) [2]. The set of function values cal- 
culated in this way are used further on according to 
the algorithm of the preselected numerical inversion 
method for obtaining the corresponding time-domain 
function. 

If  differential equations are to be solved by the 
approach mentioned above then as a preliminary step 
their solutions in the Laplace domain must be 
obtained. This is in fact the traditional application of 
the numerical inversion methods for the solution of 
linear partial or ordinary differential equations when 
analytical inverse transformation is either not possible 
or the numerical inverse transformation is much faster 
than the direct use of the corresponding time-domain 
funcion. The latter is usually the case when the ana- 
lytical inverse transformation leads to functions con- 
taining infinite series or integrals which must be solved 
numerically for each time point [4, 51. 

For more complicated partial differential equations 
(e.g. multi-dimensional or with coefficients which are 
not necessarily constants) the Laplace transformation 
does not lead to a readily solvable ordinary or partial 
differential equation. However, the transformed equa- 
tion has one independent variable less than the 
original time-domain equation. The computation time 
necessary for its numerical integration is therefore 
much less than that for the original equation. For 
this reason even if the transformed equation is solved 
several times for different p values to provide the 

necessary function values for the numerical inversion 
algorithm, the total computation procedure, including 
the numerical inversion itself, will still remain much 
faster than the conventional integration of the original 
equation. Another advantage of the combined tech- 
nique is that the solution is in the form of a continuous 
function of time while conventional integration leads 
to a discrete function of time which is less convenient 
for further processing (e.g. differentiation) than the 
continuous function. 

3. APPLICATION TO MASS-TRANSFER IN 

SINGLE AND MULTI-STREAM LAMINAR 
PARALLEL-PLATE FLOW SYSTEMS 

The equations describing the transient mass-trans- 
fer in single or multi-stream laminar parallel-plate 
flow systems are parabolic partial differential equa- 
tions of the second order usually with three inde- 
pendent variables (one temporal and two spatial) and 
with coefficients not all of which are constants. In the 
general case these equations cannot be solved ana- 
lytically. A numerical method usually used for the 
solution ofsimilar problems is the implicit alternating- 
direction finite-difference method (IADFDM) [3]. 

In the subsequent paragraphs the equations men- 
tioned above will be solved by both the method pro- 
posed in the present paper and the IADFDM. A com- 
parison will be made between the two methods both 
with respect to precision and consumption of com- 
putation time. 

Mass-transfer in laminar parallel plate frow 
The convective-diffusion equation describing the 

mass-transfer in laminar flow between two parallel 
plates in dimensionless quantities and variables has 
the following form [6] 

ac a22 a2c ac 
33=7Bax’+‘ar’-w)~ (3) 
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where U(Y) = I .5( I - Y2) is the dimensionless flow 
rate, r = D,,L/ua’ is the Fourier number, and 
fi = (a/L)’ is a geometric dimensionless group. 

It was shown that for most practical cases the axial 
diffusion term [i.e. T~(~‘C/~?X’)] can be neglected [6]. 
Such a simplification is used in the present paper 
without limiting the generality of the conclusions 
made. 

The initial and boundary conditions under which 
this equation will be solved correspond to the case 
of two impermeable walls and a solute step-function 
input at X = 0 

C(0, x, Y) = 0 (X 2 0) 

C(O,O,Y)= I (030) 

(ig.=” = (i$=, =O. 

By Laplace transformation equation (3) is reduced 
to a partial differential equation with two independent 
variables (equation (4)) 

a2c aC _ 
TRY’-ME-PC=& (4) 

The boundary conditions of equation (4) are 

C(0, Y) = l//J 

Equation (3) was solved by the IADFDM [3]. The 
corresponding implicit finite-difference equations are 
given in the Appendix. The mean concentration in the 
cross-section of the flow at X = I was calculated for 
each time point. Equation (4) was solved by the 
implicit difference method [3] (see the Appendix) for 
p,=2k+lwherek=0,1,2,...,19.1nasimilarway 
the Laplace transform of the mean concentration in 
the cross-section of the flow at X = I was determined 
for each pt. The numerical inverse Laplace trans- 
formation was performed by the method employing 
expansion of the Laplace domain function into Four- 
ier sine series [2]. It was found that the truncation 
error at the 15th term in the infinite series constituting 
the final inversion formula (equation (5)) was already 
negligible 

P=z 
C(0) = c b,sin((2k+l)arccos[exp(-0)]) (5) 

k=ll 

where 

The concentration-time profiles at X = I calculated 
by the two methods were virtually indistinguishable 

Table 1. Comparison between the proposed method and the 
IADFDM (T = 1.0) 

Concentration 
atX=l 

Computation time [s] 

New 
0 method IADFDM 

0.75 0.044 0.046 
1.00 0.51 I 0.51 I 
1.25 0.878 0.874 
I so 0.984 0.983 

86 1740 

from each other which is illustrated in Table I. The 
proposed method is much faster because of the fol- 
lowing reason : according to the IADFDM [3] for the 
determination of the concentration at X = I for each 
time point two sets of systems of algebraic equations 
must be solved. The former set consists of N+ I sys- 
tems of A4 difference equations which are implicit in 
the X-direction, where N+ I and M+ I are the num- 
bers of grid points in the Y- and X-direction, respec- 
tively. The latter set includes M systems of N+ I 
difference equations implicit in the Y-direction. The 
transient part of the concentration-time curve at 
X = I for Fourier numbers from 0.5 to 3.0 is located 
in the dimensionless time region from 0 to 2 [6]. By 
the method of trial and error it was found that this 
time interval should be subdivided in 200 steps 
(K = 200). In this case the two sets of systems of 
difference equations mentioned above must be solved 
200 times. At the same time for the numerical inte- 
gration of equation (4) provided that the network of 
spatial grid points is the same, only one set of M 
systems of N+ I implicit difference equations should 
be solved. This fact shows that if the computation 
time necessary for solving the three sets of systems of 
equations mentioned above is the same, the solution 
of equation (4) requires approximately 2K times less 
computation time than equation (3). Taking into con- 
sideration that equation (4) should be solved I6 times 
it can be concluded that for this particular example 
the proposed method should be 25 times faster than 
the IADFDM. The real computation times for equa- 
tions (3) and (4) are presented in Table I. They show 
that the proposed method is 20 times faster than the 
IADFDM. This slightly lower value can be explained 
by the fact that the set of X-implicit equations for 
equation (3) can be solved faster than the Y-implicit 
equations which are similar in structure with the 
implicit equations of equation (4) (see the Appendix). 
The computation time necessary for performing the 
inverse Laplace transformation once the necessary set 
of function values are calculated is 6 s. 

Mass-transfer in a co-current parallel plute laminar 
double stream J~OW system 

This flow system, consisting of two co-current par- 
allel plate laminar streams (i.e. donor and acceptor 
streams) separated by a permeable with respect to the 
solute wall with zero resistance, is described math- 
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Table 2. Comparison between the proposed method and the IADFDM (T = I .O for both 
the donor and the acceptor streams) 

New method JADFDM 

0 Donor Acceptor Donor Acceptor 

0.75 0.043 0.001 0.044 0.002 
Concentration I .oo 0.412 0.120 0.405 0.121 

atX=I I .25 0.655 0.237 0.653 0.237 
I .50 0.719 0.269 0.721 0.267 

Computation time [s] 448 9047 

ematically by two equations similar to equation (3). 
They are coupled through joint boundary conditions 
and thus form a conjugated boundary value problem. 
A step-function concentration change in the donor 
stream at X = 0 was assumed to take place at 0 = 0. 
The details of the solution are reported elsewhere [n. 
In the calculations it was assumed that both channels 
were of equal height and that the molecular diffusion 
coefficient of the solute in both streams had the same 
value. 

Very good agreement was again observed between 
the proposed method and the IADFDM (Table 2) 
and the ratio of the corresponding computation times 
was almost the same as in the previous example, i.e. 
20.2. 

4. CONCLUSIONS 

A fast numerical method for solution of linear par- 
tial differential equations frequently encountered in 
mathematical physics and chemical engineering 
describing transient transfer phenomena was 
developed. It is based on transforming the equations 
in the Laplace domain where they are numerically 
solved and subsequent numerical inverse trans- 
formation of these solutions. The computation pro- 
cess can be speeded up by more than one order of 
magnitude in comparison with the numerical tech- 
niques for approximate solution of linear partial 
differential equations traditionally applied in such 
cases. In the present study the finite-difference 
methods were used for the solution of both the orig- 
inal and the Laplace transformed equations. It should 
be pointed out that any other appropriate method 
for approximate solution of linear partial differential 
equations can be used as well. This fact shows that 
any improvement in the numerical techniques for 
solution of linear partial differential equations could 
be utilized successfully for improving the method 
described in the present paper. As far as the numerical 
solution of transient multi-dimensional transport 
problems is time-consuming the proposed method 
also provides a substantial economy of computation 
time in absolute value, especially when multiple solv- 
ing of the corresponding equations is required. This 
becomes very crucial for multi-stream systems. The 
examples in the present study illustrate how sub- 

stantially the computation time increases with chang- 
ing the number of streams from one to two. 

The examples considered in the present inves- 
tigation are equations describing transient mass- 
transfer in laminar flow systems. Because of the simi- 
larity between mass- and heat-transfer it can be con- 
cluded that the proposed method is suitable also for 
the solution of equations describing transient heat- 
transfer in single and multi-stream flow systems. 
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APPENDIX 

The 8, X and Y regions of interest are divided into K, M, 
and N subintervals, respectively, so that it can be written : 

O=kAO (k=0,1,2 I..., K) 

X=iAX (i=O,1,2 ,..., M) 

Y=jAY (j=O,1,2 ,..., N). 

Implicir finile-d@erence equalions of equation (3) 
These equations form the following two sets of systems of 

algebraic equations : 

set of Nf I systems (.i = 0, I. 2,. . . , N) of M X-implicit 
equations(i=O. I,2 ,..., M-1): 
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Table Al. Coefficients of the finite-difference equations of 
equations (3) and (4) 

0 O<j<N N 

Do 2~~,C,,,, d,(C,,,- 1.1 + ct.,+ II) 2~~,C,,N- 1.1 
D, 0 -d, -2J, 

DZ -2d, -d, 0 

D, 0 I 2 

DA 2 I 0 

(I+~~,)~,,,~+,s-~zC,-,,,~+os = &+(l-2d,)C;.,~ (Al) 

where d, = r(AU/2(AY)‘); dZ = 0.75[1 -(jAY)‘](AO/AX); 
and D, are defined in Table A I : 

set of M (i = I. 2.. , M) systems of N+ I Y-implicit equa- 
tions(j=O,I,Z ,.._, N): 

D,c,,,- ,.A+, +(I +2d,)C.,.~+, 
+DzC.,+,.r+, = JzC,- I.,.A+os+(~ -4)C.,.~+u5 LQ 

where D, and D, are delined in Table Al. 

Iniplicil firlile-dif/rmce equuliotu of equorion (4) 
These equations constitute M sets (i = 0, I, 2,. , M- I) 

of N+ I implicit algebraic equations (j = 0, I, 2, , N) 

D&i, I.,-, -(~+~,)~,+,.,+DJ~,,,.,+, = (YI--.(l,)c,., 
(A3) 

where 9, = (1.5/7)[1 -(jAY)‘]((AY)‘/(AX)); yz = (P/T) 
(AY)‘; and D, and D, are detined in Table Al. 


